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CONVERGENCE OF MOMENTS OF STANDARDIZED QUANTILES
Keaven Anderson

Abstract. A sequence of independent identically distributed random variables
is considered. Necessary and sufficient conditions on the density of the distribution
are given for convergence of the moments of standardized quantiles of the first n
observations as n — oco. Similar conditions are given for the convergence of the

‘moment generating function. :

Running title: Convergence of moments of quantiles.
AMS 1980 subject classification numbers: Primary 60 G30; Secondary 60 F25.

Keywords and phrases: order statistics; quantiles; moments; moment generat-
ing functions; asymptotics; LP-convergence.

_ §1. Introduction and summary. Let F(z), —o0 < z < o0, be a distribution
function with corresponding density f(z). Assume ¢ € (0,1), F(q) = ¢ and
that the derivative of F(z) exists and is positive at z == q. Let X;,X3,... be
independent, identically distributed random variables with distribution function
F(z). Denote the order statistics of X, X3, ..., Xn by Xi:n, Xain, - - , Xnin. Let
a,, = en + O(1). Assume Z ~ N(0,¢(1 — ¢)/f?(g)). Wretman (1978) has shown.
that n1/2(X,,.n — g) converges in distribution to Z. Other authors have shown
the same result under additional assumptions on f(z); e. g. Rao (1973) assumed
/(z) continuous at g and Cramér (1946) assumed the derivative of f (z) continuous
at q.
This paper gives necessary and sufficient conditions for E{¢(n'/3(X,..n — Q))}
to converge to E{g(Z)} for a class of functions which includes g(z) = z* and
g(z) = €**. One pair of necessary and sufficient conditions for g(z) in this class is -

. . —log(l — F(z)) .. —log(F(—=z))
it e I e B

Another necessary and sufficient condition is that there exists § > O such that
CE{|9(X1)I*} < oo. - | - -
A theorem which will eventually connect these two types of conditions will
be given in section 2. This theorem is actually of some interest in itself as it may
‘be used to determine whether or not the expectation of a function of a random
variable exists. The results stated above will be proved in section 3. ]
Besides the obvious applications, applications to sequential occupancy and
related problems are suggested by Holst (1981) and Anderson et. al. (1980).
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§2. Tails and expectations. A “nearly” necessary and sufficient condition for
the mean of a distribution to exist will be given in this section. This result is
easily extended to show whether or not the expectations of many functions of
a random variable exist. As examples of extensions moments and the moment
generating function will be considered. Lacking a suitable reference a complete

proof of theorem 1 is given here.

Theorem 1. Suppose X is an arbitrary non-negative random variable with
distribution function F(z). Let

o = lim inf — 2L = F(2))
z—+00 logz

If @ < 1then E{X} =o00. If a > 1then E{X} < 00. If @ =1 it may be the
case that E{X} = o0 or E{X} < o0. .

Proof. The last part of the proposition will be proved first. If F'(z) =1 —1/z

forz > lthena=1and E{X}=o0. If F(z) =1 —z"le~ V8= for z > 1
then @ = 1 and E{X} = 2. )

Assume a > 1. Then there exists A € (1, ) and z; such that for z > z;
—log(1 — F(z)) > Mlogz. This implies that for z > z; 1— F(z) < z~> and
thus E{X} < o0. - _ ‘

Now suppose a < 1. It will be shown that } ;> , P{X > k} = oo which
implies E{X} = oco. If @ < 1 then there exists A € (@,1) and 23 < z2 < ---
~ such that 1 — F'(z,) > z;7*, n=1,2,-- and z, — 00 as n — 00. Let y, be the

-greatest integer less that or equal to z,, n =1,2,--- and let yo = 0. Then

00 00 Yn () .
Srx>r=Y Y px>pxY LTl in e
k=1 - n=1 kz=yn—3+1 . n=1 Zn z—00 Z),

Deflnition. For an arbitrary non-decreasing function g(z) define g—(z) =
inf{y : g(y) 2 z}. |
Corollary 1.1. Let X be an arbitrary random variable and denote its dis-

tribution function by F(z). Let g(z) be an arbitrary non-decreasing, non-negative
function such that g(z) — 00 as z — F~1(1). Let

o= limigt —0El—F()
z—F=i(1)  logg(z)

If @ > 1 then E{g(X)} < o0, if @ < 1 then E{g(X)} == o0, and if @ = 1 it may
be the case that E{g(X)} = o0 or E{9(X)} < o0.
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Proof. This follows from theorem 1 since

—log(l — F(z)) _ —log(1 — F(g~(z)))

- liminf liminf
z~sF—1(1) log 9(z) z—+00 logz
= limint —108P{9(X) > 2}
z—00 logz

Corollary 1.2. For an arbitrary random variable X with distribution function
F(z) let

oy = limint ZIBU—FE) - gy g 2108 (2)

z—00 log z z—+00 log z !

and a = min(a4,a-). f0 <k <a then E{IX|*} < o0. If £ > a then
E{]X|*} = o0. For k = a it may be the case that either E{|X|*} = oo or
E{|X[*¥} < oo. ‘ '

Corollary 1.3. For axi'arbitrary random variable X with distribution function
F(z) let :

az = lim inf —log(1 — F(z)) and a; = —liminf —-logF(-—z)‘
Z—00 z : 2400 z

If t € (g, ap) then E{e!X} < 00. If t < a; or t > ap then E{e'X} = o0.

§3. Moments of order statistics. We are now prepared to address the questions
of interest. The proof of the necessity of (1) for the existence of moments of
standardized quantiles is now trivial in many cases. The proofs of the convergence
results presented here are analytic and somewhat tedious in nature. Following is
the most general result concerning “necessity” that will be given.

Theorem 2. Suppose g(z) is a non-decreasing, non-negative function, X,
X, ... are independent identically distributed random variables with distribution
function F(z), and that |

liminf —log(1 — F(z)) =0.
z—+00 log ¢(z)

- Then for any f > 1, @ and non-negative integers n, k, 1 <k<n

E{g(8(Xsn — a))} = oo.
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Proof. This follows from theorem 1 since for large z
P{g(ﬁ(xk:n - a)) > .'l:} Z P{g(ka) > z}
>(, 0 Ja— e e e

and thus

. — — —_ — F(q—1
lim inf log P{g(A(X:n — a)) > 2} < (n—k-1)liminf log(1 — F(9~"()))
400 - logz z—00 logz

| oo —log(t — F(z)) -
Sk g

For the remainder of the paper the assumptions of the first paragraph of
section 1 will be used. Convergence results will be shown using the mt.egral
representation

B{o(n/2(Xauon — )
= [ s —apn( 2 ) @i - PP s @

Letting ¢, == a,/n it is easy to show using Stirling’s formula that

() T e T S

Gn
Letting .
pn(t) = callogen — logu) + (1 — cn)(log(l — cn) —log(l —u))
n=1,2,...,00, where ¢ = ¢, it follows that as n — oo
E{g(n"/*(Xep:n — a))} o |
~ [ (G )1/2 12) oxp (1og g(n*/2(z — @) — mpa(F(a)))dz. (4

—oo \ 27(1 — ¢n) F(z)
Three assumptions will be made in much of the following:
{) g(z) is a continuous, non-decreasing, non-negative function,

£f) there exists § > 0 suchthatif ¢t > 1,z>0 log g(tz) <tp log ¢(z),

—log(l — F(z))
)R T ogeta)




Lemma 1. Under assumptions i) - i) if € > 0 and 7<1/4

0= nl-i—oncl:o q+cn"'", 1/2 I{'(( )) exp (log g( llz(z - q» - np"(F(z)))

Proof. Without loss of generality we assume 9 > 0. Since

_‘6n+1_‘c,;

u 1—

ph(u) = and pj(u) = +

( u)’
it follows that p,(u) is convex and assumes it minimum of 0 at ¢,. This implies
that for any u > ¢ pa(u) = poo(u) > 0. Since for a given z > ¢ and n large -
log(g(n'/?(z — q))) < Pn*/?log(g(z — g)) it follows that the integrand of the .
lemma goes pointwise to zero.

The integrand will now be bounded in the tail for large n. Let n > 0 and
z3 > q be such that for if z > z; then —log(l — F(z)) > nlogg(z). It follows

now that there exists k; such that for z > z; the integrand is bounded by

k1f(z)exp (n‘/ 2Blog g(z — q) + logn'/? — nnlog 9(z))-

This can be bounded by &} f(z) for some k} > 0.

The integrand on some interval of the form [g -+ ¢/n7, z;] will now be con-
sidered. Using the first order Taylor’s serics expansion with remainder it follows
.that for u > ¢, some 0,(u) such that 8,(u) € [cp, 1}

_f cn 1—e¢, (u—cp)? (u—en)?
Palu) = (oa(u) + ) 2 el

For n large F(z) > ¢+ (z — q)f{q)/2 for z € (q,q9 + ¢/n7]. Thus the intégrand :
is bounded for some k3 > 0 by

ka1 (z) exp (log n'/2 + log g(n'/*(z — q)) — neal¥q)/ (4n27)).

Since 7 < 1/4 and log g(n1/?(zy — q)) = O(n'/3) it follows that for some k} and
N the integrand is bounded by k) f(z) forn > N..

The contention now follows by the dominated convergence theorem since t.he
integrand is bounded by max(k} k’z) f(z) for n sufficiently large.

Lemma 2. Assume Y ~ N(0,¢(1 — ¢)). For any ¢ > 0 as n — 00

e4-¢/nt/8 RN : : .
e@=[_ . ol 7 e — i enau s B

c—e/n1/s G —1



Proof. Letting z = n!/2(u — ¢,,) and applying equation (3)

cten?/20 1/2 én—1 | e
N - g(z+4n'2(en —c)) z — 2
ffz(f) /c_,_m;/xo (27en(l — cn))f/2 (1 + n‘/gc,.) (1 nl/2(1 —_ c,,)) o ‘dz.

‘Using the Taylor's series expansion

2 z3

3(1 Fo(z)p

which is valid for —1 < z < 1 and some 4(z) between 0 and z. itis a
straightforward calculation to show that

a”.—-l Nn—an
z z | z%
1 : —_—— ]
‘o8 (( + n1/2cn) | (1 nl/2(1 — cn)) ) 2¢(1 —¢)

as n — 00. Thus

log(l +2z)=12z— Z

max
Jz—c| <end/i0

¢+ en?/10 ‘
€n(e) ~ / gz + n'/2(en —c) exp(—2%/(2¢(1 — ¢)))dz.

c-—gnal_‘c (27I.C(1 - C))l/z )

Since ¢, = ¢+0O(1/n) assumption i)implies g(z+n1/3(c,—c) — ¢(z). Assumption
#1) implies that g(z) grows at most exponentially. This implies that the integrand
above can be bounded by g(2)k; exp(—kz22) for some k;, k2 and n large. Thus
by the dominated convergence theorem £(e) — E{g(Y)}.

We are now prepared to prove the most general convergence result which will
be given here. :

Theorem 3. Assuming :')-iz'z'), f(g) > 0, and that Z ~ N(0,c(1 — ¢)/ f3(q))

E{g(n}/*(Xein — q))} ~ E{5(2)}.

Proof. From (2)-(4), and lemma 1 and its obvious anélog it follows that for
any ¢ > 0

E{g(nxlz(xa»:n —q))}
F~Y(c+e)

~ 1/2¢,, __ n
[ e, T q))n(%

:II)F(z)°-#-'(1_ — F(z))*—°" f(z)dz.
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Letting u = F(z) the above integral is equal to

cte . B
/c g(n}3(F—(u) — q))h(at _-11) w1 — y)"—ondy,

For any 6 > 0 there exists € > 0 such that for u € (¢ —¢,¢ + €)

< F7Yu)—

f() !()

The result now follows from lemmas 1 and 2 after substituting the two bounds .
into the integral above.

Propositions 1 and 3 below follow from theorems 2 and 3. Proposition 2 fol-
lows from proposition 1 and corollary 1.2. Proposition 4 follows from proposition
3 and corollary 1.3. For each of the following propositions recall that we assume
the assumptions of the first paragraph of section 1.

Proposition 1. Define a4 and a_ as in corollary 1.2. If & > 0 then
E{(n'/?(X,,:n — q))*} = E{Z*} as n — oo i and only if a4 > 0 and a— > 0.

Proposition 2. If £ > 0 then E{(n'/?(X,,.n — q))*} = E{Z*} as n = o0 if
and only if there exists § > 0 such that E{|X;{’} < 0.

Proposition 3. Define a; and ay as in corollary 1.3. Then for all t > 0
E{exp(tn'/?(X,, .n —q))} — E{e*?} if and only if az > 0. Similarly forallt < 0
E{exp(tn'/3(X,,.n —q))} — E{e*?} if and only if @y < 0.

Proposition 4. For all t > 0 E{exp(tn"/?(Xa,.n — q))} — E{e*?} if and
only if there exists ¢ > 0 such that E{e‘**} < oo. Similarly for all t < 0
E{exp(tn'/?(X,, .n — q))} — E{e*?} if and only if there exists ¢ > 0 such that
E{e— %1} < o0.
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